LABORATORY MANUAL FOR MAGNETIC FIELD ALONG THE AXIS OF A COIL

In case of any corrections, kindly contact

Dr. Abhinav Pratap Singh

Aim: To study the variation of magnetic field with distance along the axis of a circular current carrying coil.

Apparatus: DC Power supply, Gauss meter with axial probe, probe holder, multimeter, connecting leads, coil, meter ruler, clamps and holders

Theory: The intensity of magnetic field at a point on the axis of a circular coil of radius a having n turns, at a distance x from the center of the coil is given by

$$B = \frac{\mu_0}{4\pi} \frac{2\pi n I a^2}{(a_s^2 + x_s^2)^{3/2}} i -$$

where I is the current in amperes flowing through the coil. For a solenoid of finite length, the magnetic field at the center of the coil is given by

$$B = \frac{\mu_0 nI}{2l} (\cos \alpha - \cos \beta),$$

where angles α and β are shown in fig. 1.

89999999999

: Figure 1: Magnetic field inside a solenoid.

Procedure: The experimental set-up used for the experiment is shown in fig. 2.

Figure 2: The expasimental set-up used in the experiment.

- 1. Connect the power supply to the coil.
- 2. Set up the gaussmeter and the sensor.
- 3. Arrange the set-up as shown in fig. 2.
- 4. Place the coil on the laboratory jack at around the center of the wooden scale.
- 5. Insert the axial probe inside the coil.
- 6. Switch ON the power supply and set the current to an appropriate value (~ 1 A).
- 7. Measure the magnetic field at various positions of the axial probe.
- 8. To eliminate the asymmetry in the experimental set-up, reverse the current and again measure the magnetic field. The result is given by the average of the measured values.
- 9. Position of maximum magnetic field should be taken as the x = 0 position.
- 10. Repeat these steps by changing the coil with different length, diameter and turns.
- 11. Plot a graph between the position of the axial probe and the magnetic field for all the measurements; a sample graph is shown in fig. 3.

Figure 3: A graph between magnetic field and axial distance.

Observations:

Specifications of the coil:

- 1. Number of turns $= \dots \dots$
- 2. Length $= \dots$

Current in the coil, $I = \dots$ Axial probe reading for maximum magnetic field =

		· . · ·		(1)
Γ	S.	Position of axial probe	Magnetic field	$x = (x') - (x_0)$
١	No.	z' (cm)	(Gauss)	(cm)
r	1.	36. 6		
-	2.	//	:	
t	3.			
:	4.		• .	/ .
Ì	5.	: 1		
Ì	·6.	n'	· Gman	۵,
	7.	. ' . .		21%
	8.	/		• .
	9.			
	10.		:	, .
	11.	··· . .	•	
	12.			

- 1. Repeat above measurements for different coils with different length, diameter and number of turns.
- 2. Draw graphs between x and magnetic field for various coils.

Results: From graph following changes are observed with change in

Length of the coil:

2. Diameter of the coil:

3. No. of turns in the coil:

Precautions:

- 1. The current in the coil should not be increased beyond the maximum current ratings for the coil. It is safe not to increase the current beyond 1 A.
- 2. It should be ensured that the axial probe is along the axis of the of the coil while measuring magnetic field.
- 3. Readings around the maximum of magnetic field should be taken carefully to determine the center of the coil.

Result: - Mag. field is maximum at the contex of Coil & decreases as we move away from the center, towards the edges.